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ABSTRACT 

Every bounded domain in a complex Banach space E is biholomorphically 
equivalent to a finite product of irreducibles if and only if E does not contain c,,. 
A quantitative version of this holds if and only if E has finite cotype. 

§I. Introduction 

In [16, p. 17, problem [I] W. Kaup posed the following problem: "For  which 

complex Banach spaces E is every bounded domain D C E biholomorphically 

equivalent to a direct product of irreducible complex Banach manifolds?" 

In [16], Kaup gave a partial answer and in this article we give a complete 

solution. Our  main results are the following two. 

THEOREM 1.1. Every bounded domain in the complex Banach space E is 

biholomorphically equivalent to a finite product of irreducible complex Banach 

manifolds if and only if E does not contain a subspace isomorphic to co. 

Of course, reflexive spaces (for example) do not contain co. 

THEOREM 1.2. The Banach space E with open unit ball B has finite cotype if 

and only if there exists a function ~b : [1, ~)---~ [1, oo) such that if D is a domain in E, 

B C D C rB and D is biholomorphically equivalent to D1 x D2 × • • • × D, where 

each D, is a complex Banach manifold of positive dimension, then n <= ~b (r). 

This quantitative version of Theorem 1.1 applies, for example,  in uniformly 

convex spaces, which always have finite cotype. One might refer to r as the 

eccentricity of the domain D. Clearly, we could assume only r~B C D C r2B, and 

have the same conclusion with r = r2/rl. 
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Our methods include the use of invariant metrics from complex analysis and 

various concepts and results from Banach space theory. We discuss some of 

these and also prove some technical results for later use in sections 2 and 3. In 

section 4 we prove Theorem 1.1 and in section 5 we prove Theorem 1.2 together 

with some related results. In section 6 we give relations between the function 4~ 

and various functions which arise in the geometric theory of Banach spaces and 

we also give explicit estimates of 4~ for L p (/z) spaces. Some of the estimates we 

require may be of independent interest. 

We refer to [8, 12] for basic concepts in infinite dimensional holomorphy, to 
[12, 17, 18] for the theory of invariant metrics on complex manifolds and to 

[7, 19, 20, 25] for results on the geometry of Banach spaces. 

The second author would like to thank the Mathematics Department of the 

University of North Carolina, Chapel Hill for its hospitality while some of this 

work was done. 

§2. Banach space theory 

We first recall ([7, p. 44, theorem 6] and [19, p. 98, proposition 2.e.4]) a 

characterization of Banach spaces which contain co. 

PRoPosrrloN 2.1. A Banach space E has a subspace isomorphic to co i[ and 

only i[ there is a non-convergent series E:=I xn in E such that, for some c > O, 

holds [or all sequences of scalars (an):~l. 

Next we construct a bounded domain in a Banach space E containing Co with 
certain properties which are used in section 4 to show that this domain is not 

biholomorphically equivalent to any finite product of irreducible domains. We 

remark that if E is separable then co is complemented in E and if E is a dual 

space then h, is contained and complemented in E and consequently our 

construction is trivially achieved in both of these cases. 

LEMMA 2.2. Let (E, I1" II) be a Banach space. I rE C E is a closed subspace and 

II" Ill is an equivalent norm on F, then I1" II, can be extended to an equivalent norm 

on E. 

PROOf. Let C be the closed unit ball for the norm 1}. 111 on  F and let Br, B~ be 

the closed unit balls for {{. II on F and E, respectively. Then 

mgF c c c M~F 
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for some 0 < m < M < oo and the closed convex hull of C U roBE is the unit ball 
for the required norm on E. (We thank the referee for suggesting this 

generalization of our original lemma and its proof.) 

REMARK 2.3. If a Banach space (E, II. II) contains a subspace isomorphic to 

Co, then there is a (1 + e)-equivalent norm tl-I1o on E (for any prescribed e > 0) 

so that (E, I1" Ila) has a subspace isometrically isomorphic to Co. This follows from 

a theorem of James [7, p. 24] and Lemma 2.2. 

LEMMA 2.4. I[ Co is isomorphic to a subspace o[ E, then there exists an 

equivalent norm on (E, I1" II.). such that [or each n there exists a Banach space Fn 
and (E, II'll ) is isometrically isomorphic to 12~®Fn for all n. (l: denotes C" 
endowed with the supremum norm and 0® signifies the maximum norm on 
I :~F , . )  

PROOF. By Lemma 2.2, we may suppose Co is isometrically embedded in E. 

Let T denote the isometric embedding. Let J denote the canonical (and 

isometric) embedding of a Banach space in its second dual. The following 

diagram is commutative: 

T 
Co ~ E 

l® ~E" 

where 7" denotes the second adjoint of T. 

Now L is complemented by a norm one projection in E" [7, p. 71] and we let P 
denote a norm one projection from E" onto T(l®). 

We renorm E" by 

II x II, -- sup(ll px II. ½11 ( I  - e ) x  II) 

and we let II x lib -- II Jx II, for every x in E. Since J and T are isometrics, it is clear 
that I1" Ilb is equivalent to the original norm on E. 

By using P and the canonical projection from l® onto 12 we see that there 

exists a bicontraetive projection P. from (E", I1" II,) onto T(l:).  Hence (E",II. II,) 
is isometrically isomorphic to i2 x ( I -  Pn)E". Since 7"(1~)C J(E)  and J(E) is a 

subspace of E" we see that (E, 11" II,) is isometrically isomorphic to 12 x Fn, where 

F, = ( I - P n ) E " N  J(E). This completes the proof. 

REMARK 2.5. Using Remark 2.3, we may suppose that 

(1 + e)llx II---- Ilx I1~ -->~llx II for any prescribed e > 0 .  
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§3. lnvariant metrics on complex Banach manifolds 

If D is a complex Banach manifold modelled on the Banach space (E, II" II), we 

let TxD denote the complex tangent space to D at x and let T(D)  denote the 

complex tangent manifold of D. Let H(D, ,D2)  denote the space of all 

holomorphic mappings from the complex Banach manifold DI into the complex 

Banach manifold D2 and let A denote the open unit disc in C. The Kobayashi 

differential metric on D is the function ko: T ( D ) ~  R defined by 

ko (x, v) = inf([ A l: ::lh E H(A, D.), h(0) = x, Xh'(0) = v}. 

For each x in D, the mapping v ~ ko(x, v) defines a non-negative length 

function on TxD satisfying 

k o ( x ; A v ) =  lA Iko(x ,o)  

but not necessarily satisfying the triangle inequality. 

For our purposes the failure of the triangle inequality will not be important, 

partly because ko (x , . )  will be "equivalent" to a norm on E. We remark that the 

Carath6odory differential metric co (x ; v ), which is defined dually to ko (x ; v ), 
does always give a seminorm on T,D. By [9, theorem 2.5], if D is a convex 

domain in E, then kr, (x ;. ) = co (x ;. ) is a seminorm. 

The fundamental properties of ko we will need are as follows. 

(i) I f  D~, Dz are complex Banach manifolds, f E H(D~, De) PROPOSITION 3.1. 

and x ~ Dt, then 

ko,0*(x); f ' (x )v ) <= kD,(x ; v) 

for all v E Tx (D1). In particular if f is a biholomorphic mapping, then f '(x ) is an 
"isometry" wi:th respect to kD,(x;" ) and ko~(/(x);. ). 

(ii) I f  D,, D2 . . . . .  D.  are complex Banach manifolds, D = Di × D2 × ' "  × D.,  
x =(x~,x2 . . . . .  x . ) E D  and v =(v, ,v2 . . . . .  v , ) E  TxD, then 

ko (x ; v) = max k o,(xj, vj). 
i 

EXAMPLE 3.2. If follows from the Hahn-Banach theorem and the Schwarz 

lemma that if D = rB, where B is the unit ball of a Banach space, then 

ko (0; o) = II v II/r. 

A complex Banach manifold (for instance, a domain in E)  is called irreducible 
if it is not biholomorphic to a product of two such manifolds of positive 

dimension. 
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PROPOSITION 3.3. Let D be a bounded circular domain in a Banach space E 

(i.e., 0 E D and if x E D then e'°x E D for all O E R) and let f: D ---> D1 x D2 be a 

biholomorphic mapping [rom D onto a product o[ two complex Banach manifolds. 

Then there are biholomorphic mappings & : Dj --> 1)j (j = 1,2) of Dj onto bounded 

circular domains 1)j in Banach spaces Ej such that 

F =  ( g ~ , g2 ) o f : D ---~1) ~ x 1)2 

is linear. 

PROOF. The existence of 1)j and & such that F(0) = (0,0) is shown by Braun, 

Kaup and Upmeier  [4, p. 129]. But then F must be linear (see the proof on p. 76 

of I121). 

THEOREM 3.4. Suppose the unit ball B o[ a Banach space E is biholomorphic 

to a finite product of irreducible complex Banach manifolds. Then there are closed 

subspaces E,, E2 , . . . ,  E,  of E, which are unique up to their order, satis[ying: 

(i) E = E t G E 2 0 " ' O E , ,  
(ii) B = ( B N E ~ ) x . . . x ( B N E , ) ,  

(iii) ]'or each j, B Cl E, is irreducible. 

Moreover, 

(iv) if B is biholomorphic to a product D, x Do x . . .  x D., of irreducible 

complex Banach mani[olds, then m = n and Dk is biholomorphic to B f'l E jk for 

some permutation j,, j2 , . . . ,  j. of 1,2 . . . . .  n, 

(v) if G,  Fz . . . . .  F,, are positive dimensional closed subspaces of E with the 

properties, 

(i)' E = F , @ F 2 @ . . . @ F m ,  

(ii)' e = ( e  N El) x ( e  N F2) x . . .  x (B N Fro), 

then m <_- n and each Fk is the sum o[ those of the Ej' s which it contains. 

PROOF. Suppose B is biholomorphic to a product Dt x D2 x . . .  x D,  of 
complex Banach manifolds of positive dimension. By Proposition 3.3 we can find 
Banach spaces E,, E2,..., E., bounded domains 1)j C Ej which are biholomor- 
phic to Dj (j = 1 ,2 , . . . ,  n) and a linear isomorphism 

such that 

T: E---~ E , @  E 2 @ . " @  E. 

T ( B ) =  1), x D 2 x " "  x 1).. 

Replacing Ej by T- ' (Ej)  C E, we may assume that T is the identity operator and 

that E,, E2 . . . . .  E. are subspaces of E. This shows (i), (ii), (iii). 
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Now let Pi: E ---> Ei be the projection with kernel 

E , @ . . . @ E i _ ~ @ E i + I @ . . . ~ ) E n  (1 =</< n). We then have 

II x tl = max(lJ P,x Jl,-.-, Jl P,,x II) 

for x E E, which implies that each of the projections P, is an M-projection (in 

the terminology of [2]) - -  i.e. II x II -- max(Jl Pjx II, II x - P , x  II). 
It is a fact that any two M-projections commute (see [2, p. 16] for a simple 

proof involving duality) and the rest of the theorem follows quite easily. In fact, 

if Qt, Q2 , . . . ,  Q,. are any projections satisfying 

II x II = max(ll O,x J[ . . . .  , II O . x  II) 

then P, Qk = QkPi are projections and thus 

and 

E, = O,E, @ " .  @ O.E,, 

B h E ,  = ( B  rl Q , E , ) x  . - -  x (B n o , E , )  

Now irreducibility of B n Ej implies that B n E, = B tq Q kjEj for some kj. Thus 

Ei C Fk~ 

and 

E, nFk =0 

(for FI, F2 . . . . .  Fm as in (v)). Similarly 

if k # kj 

Fk = P, Fk ~)  " " ~ P.Fk 

= ( E ,  n e ~ ) @ . . . @ ( E ,  n F~) 

which implies that FE is the direct sum of the Ej's which it contains. Also m _-< n 

must hold. This is part (v) of the theorem. 

If we now assume that B fq Fk is irreduible for all k, we find m = n and 

F1,F2, . . . ,  F,  must be a reordering of E1 . . . .  , E, ,  which is the uniqueness. 

Finally (iv) follows by repeating the beginning of the proof and using the 

uniqueness. 

§4. Proof of Theorem 1.1 

Lemma 2.4 and Theorem 3.4 toegether imply that if Co is contained in E, then 

E contains a bounded domain (the unit ball for an equivalent norm on E )  which 
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is not biholomorphically equivalent to a finite product of irreducibles. Theorem 
1.1 will follow from this and the following proposition. 

PRoPosrnor~ 4.1. I f  Co is not contained in a Banach space E, then every 

bounded domain in E is biholomorphically equivalent to a finite product of 

irreducible complex Banach manifolds. 

PROOF. Suppose the conclusion is false and that the bounded domain D is 

not biholomorphically equivalent to any finite product of irreducible domains. 

Let B denote the open unit ball of (E, I1" II). We may suppose without loss of 

generality that B C D C rB for some r > 1. Hence,  using Proposition 3.1(i) and 

Example 3.2, we have 

r - ' l l v  II = k,B(O, v) <- ko(O, v) <= kB(O, v ) =  Ilv [I 

for all v E To(D)= E. 
By hypothesis D is not irreducible and hence D is biholomorphically 

equivalent to a product of Banach manifolds DI x G2 one of which, G2 say, is not 

biholomorphically equivalent to a finite product of irreducible Banach mani- 

folds. By an obvious inductive argument we find two sequences of complex 

Banach manifolds (D~),=, and (G,)7=2 and two sequences of holomorphic 

m a p p i n g s  ( j~)?=l  and (g,)7=2 such that 

(a) d im(D, )=  > t, 
(b) ~ E H(D, D,) for all i -> 1 and g~ E H(D, G~) for all i = 2, 

(c) hn = (f~ . . . . .  f,,  g,+~): D --> D~ × . . .  × Dn × Gn+~ is biholomorphic. 

We suppose Di (resp. G~) is modelled on the Banach space E~ (resp. F~) for all i. 

The linear mapping 

h'(0): E ~ E, ~ E2~"  " ~ En ~]~ F.+I 

is an isomorphism and hence gives a direct sum decomposition of E. For each i 

choose v, E E~ such that ko ,~(0) ;  v , )=  1 and let 

u, = 

For any sequence of scalars (a,)7~, we have for all n 

= r  s u p  
i = l,...,n 
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We also have 

(4.2) u, >=ko , u, = sup ko,~(O),v , )=l .  
n n ~ i < m  

By (4.1), (4.2) and Proposition 2.1 if follows that Co C E. This is a contradiction 

and completes the proof. 

§5. Proof of Theorem 1.2 

NOTATION. If D is a bounded domain in a Banach space we let , r (D)  denote 

the supremum of all n for which D is biholomorphically equivalent to a product 

DI >( D2 X " "  X Dn of complex Banach manifolds of positive dimension. Of 

course , r ( D ) =  + o0 is possible in general. 

We define ¢rL(D) analogously, but allowing only linear biholomorphic 

mappings from D onto a product of domains in Banach spaces. 

DEFINITION 5.1. If E is a Banach space with open unit ball B, we let 

SE(r) = sup{~r(O): B C D C rB}. 

If SE (1)= 1, i.e. if B is irreducible, we let 

~s = sup{r: SE(r) = 1} = inf{r: SE(r) > 1}. 

We call qbE the irreducibility function and t~E the irreducibility radius of E. 

Theorem 1.2 says that 4~ (r) < ~ for all r if and only if E has finite cotype. If D is 

a domain in E and B C D C rB with r < qg~, then D is irreducible and 4~ is the 

largest constant with this property. 

If E and F are isomorphic Banach spaces, then the Banach-Mazur distance 
between E and F, denoted d (E, F), is defined as inf[ll TII II T -1 II], where T ranges 
over all linear isomorphisms from E to F. (If E and F are not isomorphic then 

d(E, F) is sometimes defined as + 0o.) 

Our first result reduces the proof of Theorem 1.2 to a linear problem. 

THEOREM 5.2. If  E is a Banach space (over C) with unit ball B, then 
(i) ~b~(r)= sup{TrL(D): B C D C rB, D convex and circular}, 

(ii) S E ( r - 0 ) = s u p { n :  d(E, EI@®...(~)®En)< r for some Banach spaces 

El, E2 . . . . .  En of positive dimension} (r > 1). 

(By $~ 0" - 0) we mean the left hand limit at r or sup{$e (t)l t < r}.) 

PROOF. (i) Let D be any domain in E with B C D C r B  and f =  

(f~, f2 , . . . ,  fn): D --', D1 x D2 x . . .  x Dn a biholomorphic map onto a product of 
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manifolds. Then T = f'(0) is an isometry from E with the Kobayashi differential 

metric ko (0; . )  to E1 x E2 x . . .  x E, (where E i = Tr~o)(Dj)) equipped with the 

corresponding Kobayashi metric 

kD ...... o.ff(0); u ) =  max kDj ~ (0); uj). 

We now identify each Ej with the subspace T-~(Ej) of E and henceforth assume 

that T is the identity and Ej C E. Then we have E = E1 (~) E2 E) ' "  "@ En. 

Now let / )  be the convex hull of the indicatrix 

{o~zlko(o;o)<l}. 
Apply 3.1(a) to the inclusions S C D C rB (and use 3.2) to get [Ivll-  ko(0; v ) =  

[[ v [[[r. Consequen t ly / )  is a balanced domain and B C / )  C rB. 
The fact that T = identity is an isometry may be restated as 

fi = (fin E,) x (fin E~) x . . .  x (fin En).  

Thus ~b~(r)= < sup{~rL(D)[ B C D C rB, D convex circular}. 

The reverse inequality is obvious and we have shown (i). 

Part (ii) follows immediately from (i) and the observtion that a convex circular 

bounded domain in E is the unit ball for an equivalent norm on E. 

NOTATION. If E is a Banach space let 

Ce (n) = inf{d (F, I:)l  F C E is an n-dimensional subspace}. 

Our next result shows that Ce (r) and CE (n) are almost inverse to each other. 

PROPOSITION 5.3. For any Banach space E, any r>= 1 and any n >= 1 

(n <= dimension of E), 
(i) if tb~(r)>=n then C~(n)<=r, 
(ii) 4,e (2C~ ( n ) +  1 + e)-_ > n + 1 (for any e >0) .  

PaOOF. (i) Using 5.2(i), if d~ (r)=> n we can find a convex circular domain 

D C E  with B C D C r B  and subspaces E 1 , E 2 , . . . , E ~ C E  with E =  

EI(~)E2(~)."(~)E~ and D = ( D f l E I ) x ( D f l E 2 ) x . . . x ( D f l E , ) .  Let I1"11o 
on E which has D as its unit ball. Choose or E E j  with denote the norm 

II v, I1o = 1. Then 

ootl , - ,  o - -  max U ~,v, Ilo --- max t~, I 

for any scalars al,  a2 , . . . ,  a , ,  which shows that the linear span F of Ol, ~)2, • • • , ~.)n 
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is isomorphic to IL In fact, F with the norm 11.11o is isometric to l -~ and thus 
d(F, l~) =< r when we use the original norm. Hence C~ (n) =< • and the proof of (i) 
is complete. 

(ii) Given n, by the definition of CE (n), we may find a subspaee F C E and an 
isomorphism T:F---~I~ satisfying IITII----1, IIT- ' l l<-C~(n)+e. By the 
Hahn-Banach theorem, there exists a projection P: E ~ F with range F and 

IIPII  CE(n)+ e (see [7, p. 71] for example). Now let 

D~= T-](B,:)CF, D 2 = ( C e ( n ) + l + e ) B A k e r ( P )  and D = D ~ x D z .  

Then 

BE ¢ D C (2C~ (n)+ 1 + 2~)B~ 

and D has n + 1 factors since Dt is a copy of an n-dimensional polydisc. This 
completes the proof of (ii). 

We can now deduce the following, more precise version of Theorem 1.2. 

THEOREM 5.4. Let E be an (infinite dimensional) Banach space. Then the 
following are equivalent properties for E: 

(i) ~k~ (r) < ao for all r > 1, 
(ii) supnCE(n)= o0, 

(iii) supn C ~ ( n ) >  1, 
(iv) ck~ (3 + ~) < o0 for some e > O, 

(v) E has some finite cotype. 

PROOF. The equivalence of (i) and (ii) clearly follows from Proposition 5.3. 
An outline of a proof that (ii) and (iii) are equivalent is given by Figiel [11, p. 
203]. The original proof of this seems to be unpublished. It can also be proved by 
using James" theorem on Co [7, p. 241] and the theory of ultraproducts of Banach 
spaces. 

Clearly (i) implies (iv) and (iv) implies (iii) by Proposition 5.3(ii). 

The fact that (ii) (or (iii)) is equivalent to (v) is a deep result of Maurey and 

Pitier [21]. 

REMARKS 5.5. We will give the definition of cotype in §6 and show that ~k~ (r) 

grows like a power of r, the exponent being related to the cotype of E. 
In fact we can now give the weaker result that ~bE (r) _<-- cr ~ for some c > 0 and 

some q > 0, assuming cks (r) < oo for all r. This follows from Figiel's proof of the 
equivalence of (ii) and (iii). He actually shows that (iii) is equivalent to 

(ii)' C ~ ( n ) >  ca" for some c >0 ,  e > 0 ,  all n. 
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From (ii)' and Proposition 5.3(i) it follows that 

¢ E ( c n ' ) <  n. 

Hence ~ (r) < (r/c)  1/" + 1. 

§6. Estimates and examples 

In this section we make more precise the relationship between cotype of a 
Banach space E and the irreducibility function ~b~ (r) introduced in Section 5. 

This allows us to calculate ~bE(r) exactly in the case E = L~(/x), p->__2 (/x any 

measure). However  the best possible constants obtained by the same method in 

the case p < 2 do not give ~bE (r) exactly. This suggests using concepts which 

make use of complex scalars such as a certain absolutely summing norm of the 

identity on E or a complex version of cotype. The theory of complex uniform 

convexity [6] does not seem to have been developed sufficiently for us to use it 

successfully, although it is known to imply finite cotype. 

DEFINrnON 6.1. Let E be a Banach space and let r,(t) denote the 
Rademacher functions on [0,1], r~ (t) = sgn{sin(2"crt)}. E is said to have cotype q 
(q => 2) if there is a constant c < ~ so that, for every finite set of vectors {x~}~%1 in 

E, we have 

/0' II (6.1) IIx, ll' =< c ' r~(t)x, dt. 

The infimum of all constants c satisfying (6.1) for a fixed n is denoted by C, ,  (E). 
We let Cq(E)=sup.  C~.,(E) and call Cq(E) the q-cotype constant of E. A 
Banach space is said to have finite cotype if it has cotype q for some 2 =< q < ~. 

PROPOSmOS 6.2. For any Banach space E, the following inequalities hold: 

(6.2) n <-_ C.. (E)~CE (n) ~, 

(6.3) cb~ (r) <= Cq (E)qr q, 

(6.4) ~ >= 2'/qCq,2(E) -~. 

PROOF. To prove (6.2) fix an e > 0 and choose a finite dimensional subspace 

F C E and an isomorphism T: F--* l~ satisfying II TII--< 1, II T-111--< ( n ) +  ~. 
Then choose xl, x2 . . . . .  x, E E such that T(xj)=e~ = the ]th standard basis 
vector e~ in l~. Then for t E [0, 1], 
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On the other hand, 

= [I 7 -111 

=< 

II x, ll ll Tx, ll = ll = 1. 

Combining these two inequalities with (6.1) and letting e--)0  yields (6.2). 

Proposition 5.30) now yields (6.3) and (6.4). 

Recall that 1~ denotes C" with the norm 

\ i/q 

We say that a Banach space E contains lq s almost isometrically if for each n > 1 

and each e > 0  we can find an n-dimensional subspace F C  E with d(F, l~)< 

l + e .  

We will use the following deep result due to Maurey and Pisier [21]. 

THEOREM 6.3. I [ E  is an in]inite dimensional Banach space, then 

sup{q : E contains l~' s almost isometrically} = inf{q : E has cotype q} 

(where the in]~mum is taken to mean + ~ i [ E  does not have finite cotype). 

Moreover the above supremum is attained. We denote it by q(E) .  

Notice that Dvoretzky's theorem ([10], see [261 for the complex version) 

implies that the above supremum is always at least 2. 

PROPOSITION 6.4. (i) I[ 2 < ql <= q2 <---- oo then d(l~,, 1~) = n '/''-1/'~. 

(ii) I[ 1 <= p <= 2 <-_ q <-_ oo then d(l~, l~) <= max(n 1/p-1/2, n 1/2-1/q) (for complex 

scalars). 

PROOF. For 2 --< ql < q2 < oo this is due to Gurarii, Kadec and Macaev [13] for 

real scalars and their proof also works for complex scalars. For 1 _-< p _-< 2 < q < 

oo, the proof they give for real scalars for n a power of 2 works for all n in the 

complex case since, for each n, there is an n x n unitary matrix with all its entries 

of modulus 1/XFn. 
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THEOREM 6.5. I f  E is an infinite dimensional Banach space with finite cotype 
and q = q (E ) is as in Theorem 6.3, then the irreducibility function thn (r ) satisfies 

<= 6~(r)<__ A ( e , E ) r  q+~ 

[or all e > 0  ( A ( e , E ) =  Cq+, (E)  q+" <0o is a constant depending on E and e). 

PROOF. We have already observed (6.3) that the right hand inequality in (6.5) 

follows from the definition of the cotype constant Cq+, (E)  and Proposition 

5.3(i). 

To prove the other inequality observe that Theorem 6.3 implies that E 

contains an n-dimensional subspace F with d(F, l{) < 1 + e. By Proposition 6.4(i) 

it follows that 

d(F, l•)< (1 + E)nl/L 

Hence CE (n) < (1 + e)n I/q and applying Proposition 5.3(ii) we obtain 

4~ (2n '~q + 1 + e ) =  > n + 1. 

Solving for n in terms of r = 2n ~/q + 1 + e yields the desired inequality. 

In fact we obtain the result that the smallest integer greater than ((r - 1)/2) q is 

at most ~b~ (r). This is already implied by (6.5) since t~E (r) has integer values. 

REMARK 6.6. We do not know whether it is possible to take e = 0 in (6.5). A 

more interesting question might be whether the factor 2 -q on the left side of (6.5) 

can be removed. This would follow if the factor 2 could be removed in 
Proposition 5.3(ii). 

Another question along these lines which we have been unable to answer is 
whether ~b~ (r) => [r 2] holds for all infinite dimensional Banach spaces E. Equality 

~b~ ( r ) =  [r 2] holds when E is a Hilbert space (see Kaup [16] or Examples 6.10 

below). Also, by (6.5) ~bB(r)= > ( ( r -  1)/2) 2 holds for all infinite dimensional 

Banach spaces E. 
An even more ambitious question would be whether ~b~ ( r ) =  > [r 2] for rZ= < 

dim E, and E any (complex) Banach space. This seems likely to have a negative 

answer because of an example of a real two dimensional Banach space H with 

Banach-Mazur distance 3 from the real space l~ [1]. 

DEFINITION 6.7. Let T" denote the n-dimensional torus {(e '°', e i°2 . . . . .  eie'): 

0 =< 0j =< 2Ir} equipped with the probability measure 

dO = (2~r)-"dO, d02. . . dO.. 
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For any complex Banach space E and q >- 2, n => 1 we define Bq.. (E)  to be the 
least constant B satisfying 

I1,  e'O'xiN a dO) ''q 

for arbitrary xl, x2 . . . . .  x. E E. 

We define the complex q-cotype constant of E to be 

Bq (E)  = sup Bq,. (E). 
n 

DEFINITION 6.8. Let E be a complex Banach space, q _~ 2, n > 1. We define 
Aq.. (E)  to be the least constant A satisfying 

IIx, ll' <=Asup I x'(x,)l: x ' E  E',llx'll=< 1 

for arbitrary xl, x2 . . . . .  x. E E. The related constant 

Aq (E)  = ~'.1(E) = sup A . .  (E)  
n 

is the (q, 1) absolutely summing norm of the identity on E. 

Aq (E)  is finite if and only if every weakly absolutely summable series in E is 

q-absolutely summable. Moreover,  if q(E) is as in Theorem 6.3, it is known that 
q(E) = inf{q: Ir . ,(E) < 0o}. 

Since 

1 = 1  T n j = l  

it follows easily that 

(6.6) 1 _-< A~,. (E)  _-< Bq.. (E)  ~ C, .  (E), 

(6.7) 1 _-< %1(E)  = A~ (E)  <_- Bq (E)  -< C~ (E). 

As in Proposition 6.2 we can show the following estimates, which are sharper 

than (6.2), (6.3) and (6.4) in some instances. 

PROPOSITION 6.9. For any complex Banach space E, we have the following: 

n <- A. .  (E)qCE (n) q, 

(r)  z 

~n >- 2'/qAq.2(E)-L 
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EXAMPLES 6.10. 

(a) If 2 <_- p < oo and E = Le(X, Iz) is infinite dimensional then 

(6.8) 4)~ (r) = [r '] ,  

(6.9) SB = 2 '/e. 

PROOF. Clearly (6.9) follows from (6.8). We first show that $~ (r) _-< r e (which 

immediately gives ~bE (r) -< [r e ] since SE (r) is integer valued). The inequality 

$~(r)<--r e follows from inequality (6.3) and the fact that L" has p-cotype 

constant 1 (p -_> 2). This latter fact is well-known to follow from a trivial case of 

the Khintchine inequalities 

12) 
(valid for any scalars a~, a2 . . . .  , a, E C and any p >= 2) and an argument due to 

Orlicz [22]. 
To show ~ ( r ) -  > [r e] we produce suitable examples of product domains in 

Le(X, ~). Since L~(X, I~) is infinite dimensional we can find a partition X = 

X1 O X2 U . . -  U Xn of X into disjoint measurable sets such that Le (X~,/x [ Xj) is 

non-zero for each j. The domain 

D -- {/~ L~(X, ~)1 II/I X, It~ --< 1 for 1 <=j--<-- n} 

is clearly a product of n unit balls and has eccentricity n ~/e, i.e. B C D C n t/eB 

where B is the unit ball of L~(X, I~). Thus SL,(nl/e)_- > n which completes the 

proof of (6.8). 
(b) If E = L~(X,I~) is infinite dimensional and 1-<p < 2 ,  we have the 

following results, which are less precise than the results for p _-> 2: 

(6.10) 

where /3 e = F((p + 2)/2) -~/e, 

(6.11) 

(6.12) 

¢~  (r)_-< t3~r 2 

¢~ (r) > [(r - 2) 2] + 1, 

F + 1\ I,tp / 

(For p -- 1, (6.10) reads 4)E (r) _-< (4/lr)r 2 and (6.12) reads 2 e ~L' e 4/1r --- 1.2"/3). 

PROOF. The inequality (6.10) follows from (6.3) and the fact that E = 
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LP(X, I~) has a complex 2-cotype constant C2(E)=/3p with /3~ as above. This 

follows from an argument due to Orlicz [22] similar to the one given above and 

the fact that /3e is the best constant in the complex version of the Khintchine 

inequality: 

13, ( ( 2 - ~  f f  ~" fo2~" . . . fo 2'~ ,~ a,e 'O, l " dO, d O2 . . . d O. ) '/" >= ( ,~ [ a, 12 ) ''2 

This latter fact is due to Sawa [23, 24] who used methods based on Haagerup 
[14]. Haagerup [14] determined the best constants for Khintchine inequalities 

involving Rademacher  functions, improving on the work of Szarek [27]. 

To prove (6.11) we observe first that E = LP(X, I~) contains a finite dimen- 

sional subspace E which is isometrically isomorphic to l~ and norm one 

complemented in E (for any n => 1). To see this choose disjoint measurable 

subsets X1, X~, . . . ,  Xn C X satisfying 0 < /~(Xj)  < oo. Take F to be the linear 

span of the characteristic functions Xxj (1 =< j < n) and the norm one projection 

P: E---> F to be 

1 

Now Proposition 6.4(ii) implies d(F, l~)N ~ and by finite dimensionality we 

can therefore find a linear isomorphism T: F ~  l: with II rll ~ 1, II r- ' l l  X 
Now let D~ = T-'(Bt:) C F, D2 = 2BE I"1 ker(P), D = D, x D2 where B~ denotes 
the unit ball of E. Observe that 

BE C D C (X:n + 2)B~ 

and D has n + 1 factors. Hence 4~E(XFn+2)~ n + 1, which implies (6.11). 
The first inequality in (6.12) is easily verified by constructing an example of a 

domain exactly as was done in showing 4~:(r)  --> [r e ] for p ~ 2. The other part of 

(6.12) follows from the fact that (for 1 =< p =< 2) 

(6.13) A2.2(L, (/~, X))  = B2.2(L, (/~, x)) = X/~/[[ 1 + e"  11:Io,2 1 

and Proposition 6.9. 

Although facts similar to (6.13) can be found in the literature, we have not 

found the precise result. Formula (6.13) will be proved in Proposition 6.13 using 

the following two lemmas. 

LEMMA 6.11. (i) I f O < r < l ,  --l_--<t_--<l, 0_--<a~l ,  then 

(I + at)" + (I - at)" >- (I + t)' + (I - t)'. 
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(ii) I f  p --> 1, - 1 _-< t _--- 1, z E C, then 

[l + tzlP +ll- tz lP <=ll + zl, + l l -  zl p. 

The  proof  is left to the reader .  

LEMMA 6.12. I ra ,  b ~ C and O < p <= 2, then 

(la [2+lbl2)l'2<--gplla + be'° IlLpto.2,~l 

with Kp = vS/ll  I + e'8 IILp,o.2~l. Equality holds if [ a I = I b I. 

PROOF. For  the case p = 1 this l e m m a  is given by Benne t t  [3]. It  is easy to 

verify that  equal i ty  holds if l a I --- I b l .  To p rove  the inequal i ty  it is sufficient to 

consider  the case a > 1 = b. T h e n  
i 

fo ,8 - IP dO /21r If a + e IIL~o2~,- l a + e'8 

=~ [ a + e ' ° I ~ + [ a - e ' ° j ' d O / 2 ~ r  

/o 2 ~ o y l~ = ½(a 2 + 1) p/: (1 + a cos + (1 - a cos O )P/: dO [2 7r 

with a = 2a/(a2+ 1 ) <  1. A p p l y  L e m m a  6.11(i) with t = cos O, r = p/2 to com-  

plete  the proof .  

PROaOSITION 6.13. I f  f, g E Lp (/z, X) ,  1 _-< p _-__ 2, then 

(io ,, ) (llfll~+ II g 11~)"2--- gp I l l +  e'Sg,,gdO/2~r \~/p 

with/~ = V~/II1 + e "  tlL,~o.~.,. Hence B2,2(Lp) = Kp. I f  Lp (l~, x)  is infinite dimen- 
sional then A2.2(Lp (Iz, X))  = B2,2(Lp (Iz, X)). 

PRoof .  The  deduct ion  of the inequal i ty  f rom L e m m a  6.12 is the a r g u m e n t  

due to Orlicz [22]. 

Equal i ty  holds when  f = g = the character is t ic  funct ion of a subset  of  X of 

finite measure .  H e n c e  B2.2(Lp)= K~. 
To show A2.2 = B2.2 in the infinite d imens ional  case we need only consider  the 

case where  X = [0, 2Ir] ,  d/~ = dx/2~r since Lp [0, 2~r] is finitely r ep resen tab le  in 

any  infinite d imens ional  L~ (/~, X) .  T a k e  f - 1, g = e ~. Then  

/ -  2 t r  

Ill+ e'°gll~ = I1[+ gll~ = | It/+ e'Sgll~dO/2~r = vS/r,~ 
Jo 
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which implies that A2.~(L~[0,2¢¢])>= Kg = B 2 , z .  In general we have A2.2<_--B2,2 

(see (6.6)). Thus A2~ = Be.2 in this case. 

Since it can now be done with very little effort, we show the following: 

PRoPosrrior~ 6.14. I f  E = L~ (Iz, X)  is infinite dimensional and 1 <- p <= 2, 

then CE(2)= II1 + e '° lie. (For p = 1, this says CL,(2) = 4/¢r in constrast to the case 

of real scalars where CL,(2) = 1.) 

PROOF. By finite representability of L~ [0, 2¢r] in L~ (/~, X),  it is sufficient to 
consider the case E = Lp [0, 2w]. Let f be the constant function 1 and g (x) = e ~. 

Define T from the linear span of f and g to ! 2 by 

T(af  + bg) = (a, b). 

Lemma 6.11(ii)can be used to check that UTII II T-'II----II1 + e~" lip. 
The fact that CE (2) _-> II 1 + e L II, follows from Proposition 6.13 and Proposition 

6.9. 

Our  final result is an estimate on 4~n (r) in terms of the modulus of uniform 

convexity of E, 8~ (e). 

PgoPosrnoN 6.15. IrE is a uniformly convex space with modulus of convexity 

~ (e)  = inf{1 - II x + y 11/2: x, y ~ E,  II x II = II y II = 1, tl x - y U = ~ } 

then 4~n (r) =< 1 / ~  (2/r). 

PROOF. By (for instance) Theorem 5.2(i), if ~bE (r) = n, then we can find unit 

vectors x,, xz . . . .  , x, E E such that II e'O'x, + e'°'x; + " "  + e '°'x. It <-- r for all 

01, 0~, . . . ,  0, E R. Consequently 

II . . . .  , .   xl' 2x1+ e2 2x2+.  + =< 2 
et r r "~'-U 

for all choices of e~ = -- 1. Now by 117, p. 129] or [20, p. 70], this implies 

j=l 

which is the desired result. 

REMARgS 6.16. It follows that uniformly convex spaces E (i.e. 8B ( e ) >  0 for 

all e > 0) must have finite cotype. However  L1 has cotype 2 although it is not 

uniformly convex. 
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It  is known  that  Lo (~, X )  is uni formly convex for  1 < p < oo. For  p > 1, the 

modulus  of  convexi ty  6L, has been  calculated (see H a n n e r  [15], Clarkson [5]). 

The  explicit expression for  8L, with p => 2 and Propos i t ion  6.15 yield 

OL~(r) < {1 - (1 - r -p)t'~}-I (p > 2) 

which is less precise than the inequali ty ob ta ined  by using the p -co type  constant  

of  Lv in Example  6.10(a). 

It  seems natural  to use a modulus  of complex  uni form convexi ty  (as defined by 

[6]) to obtain a sharper  result, but  precise est imates of  the kind used in the p roof  

of  Propos i t ion  6.15 do no t  seem to  be known.  
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